
Bayes’ Theorem



Frequentist vs. Bayesian Statistics
• Common situation in science:  We have some data and we want to know the true 

physical law describing it.  We want to come up with a model that fits the data. 
• Example: We look at n=10 random galaxies and find that m=4 are spirals.  So 

what’s the true ratio of spirals in the universe, r?

• Both approaches are addressing the same fundamental problem, but attack it in reverse 
orders (probability of getting data, given a model, versus probability of a model, given 
some data).  Its quite common to get the same basic result out of both methods, but 
many will argue that the Bayesian approach more closely relates to the fundamental 
problem in science (we have some data, and we want to infer the most likely truth)

Frequentist:  
•There are ‘true’, fixed parameters in a 
model (though they may be unknown at 
times).  

•Data contain random errors which have a 
certain probability distribution (Gaussian 
for example)

•Mathematical routines analyze the 
probability of getting certain data, given a 
particular model (If I flip a fair coin, what's 
the probability of me getting exactly 50% 
heads and 50% tails?)

Bayesian:  
•There are no ‘true’ model  
parameters.  Instead all parameters 
are treated as random variables with 
probability distributions.

•Random errors in data have no 
probability distribution, but rather the 
model parameters are random with 
their own distributions

•Mathematical routines analyze 
probability of a model, given some 
data (If I flip a coin and get X heads 
and Y tails, what is the probability that 
the coin is fair?).  The statistician 
makes a guess (prior distribution) and 
then updates that guess with the data



Bayes’ Theorem

• P(B|A)=probability of measuring B given A

• P(A|B)=probability of measuring A given B

• P(B)=prior probability of measuring B, before any data is 
taken

• P(A)=prior probability of measuring A, before any data is 
taken
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•The primary tool of Bayesian statistics.  Allows one to 
estimate the probability of measuring/observing 
something given that you have already 
measured/observed some other relevant piece of 
information



A simple example

• Drug Testing:
– Let say 0.5% of people are drug users
– Our test is 99% accurate (it correctly identifies 99% of drug users and 99% of 

non-drug users)
– What’s the probability of being a drug user if you’ve tested positive?
– Our Bayes’ theorem reads:

`

( ) ( ) ( )
( ) 33.0

005.099.0995.001.0

005.0
99.0|| =

×+×
×==

posp

userp
userpospposuserp

•p(pos|user)=0.99 (99% effective at detecting users)
•p(user)=0.005 (only .5% of people actually are users)
•p(pos)=0.01*0.995+0.99*0.005 (1% chance of non-users, 99.5% 
of the population, to be tested positive, plus 99% chance of the
users, 0.5% of the population, to be tested positive

•Only a 33% chance that a positive test is correct
•This example assumes we know something about the general 
population (users vs nonusers), but we usually don’t!



Example: Galaxy Populations

• Looked at n=10 random galaxies.
• Found m=4 spirals.
• What’s the ratio of spirals in the universe, r?  We are introducing an 

unknown model parameter.
• Bayes’ Theorem reads:

• p(r|data)=probability of getting r, given our current data (what we want to know)
• p(data|r)=probability of measuring the current data for a given r
• p(r)=probability of r before any data is taken (known as a prior)
• p(data)=prior probability of measuring the data.  This acts as a normalizing 

constant, and is defined as

• In other words, it’s the probability of getting finding the data considering all 
possible values of r 
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• Since there are only two possible measurements 
(spiral or no spiral), p(r|data) is adequately 
described by a binomial distribution

• We’ll assume that before any data was taken, we 
figured all possible values of r were equally likely, so 
we’ll set p(r)=1 (our prior)

• p(data) is just an integral, and we find
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•Putting all this together and simplifying, we get:

•This is just a probability distribution for r, centered around 0.4 as we would expect.

•Also, as expected, more data makes the result more robust (red curve).

( ) ( )64 12310| rrdatarp −=



The role of priors

• In previous example, we assumed that all values of r were equally likely 
before we took any data.  Often, we'll know something else (apart from 
the data) which we'll want to incorporate into our prior (physics, models, 
a hunch, etc.)

• As an example, lets say we run a cosmological simulation which 
suggests r~0.7+0.05.  We'll use this as our prior, p(r), and estimate it as 
a Gaussian distribution centered around 0.7, with σ = 0.05.
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Same as before

New prior



The role of priors
� Our new distribution

� Notice the profound effect the prior can have on the result.  The more data 
one has, the more the prior is overwhelmed, but it clearly plays a powerful 
(and potentially dangerous) role in low sample sizes

� Priors can be very controversial, especially when you have no extra 
information on which to base your prior.  Uniform priors, like we originally 
chose,  are considered too agnostic, even though they may seem like the 
safest approach.  


