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We discuss the scattering of supersymmetric dark matter particles from nuclei at nonzero momentum transfer, After a brief 
treatment of spin-independent form factors, we carefully formulate the spin-dependent scattering problem. We conclude with a 
calculation of a spin-dependent cross section in t3tXe; it falls as the momentum transfer increases, but more slowly than the spin- 
independent cross section. 

Heavy neutral supersymmetric fermions fre- 
quently called neutralinos are a promising candidate 
for galactic dark matter [ 1 ]. A variety of  experi- 
ments to detect these nonrelativistic weakly interact- 
ing particles are under development, and their inter- 
pretation will rely on an understanding of  neutralino- 
detector cross sections. Over the past few years the 
interactions o f  relatively light (a few GeV/c  2) neu- 
tralinos with detector nuclei have been systemati- 
cally explicated. Recent results from LEP and SLC 
suggest, however, that if they exist at all neutralinos 
are probably heavier. I f  both the particles and the de- 
tector nuclei have masses in the 100 GeV/c  2 range 
the scattering becomes more complicated because, 
though the energy transferred to the nucleus is still 
very small, the three-momentum transfer q=  I ql ~< 
2#v (where/~ is the reduced mass and v--- 10 - 3c is the 
average galactic neutralino velocity) can be larger 
than the inverse size of  the nucleus. Several papers 
[ 2 ] discuss the "loss of  coherence" that reduces spin- 
independent dark matter cross sections under such 
conditions. Coherence is not really the issue, how- 
ever; spin-dependent scattering, which to some ap- 
proximation occurs from a single nucleon, will also 
be affected because the single-nucleon wave function 
is spread out over much of  the nucleus. Thus struc- 
ture functions will modify both kinds of  scattering at 
finite q. Spin-dependent structure functions, which 

are the more difficult to model, are the main subject 
of  this paper. 

We briefly review some relevant facts about neu- 
tralinos. In the minimal supersymmetric extension of  
the standard model, the lightest neutralino is a linear 
combinat ion of  bino, wino, and two higgsinos ex- 
pressed as 

,~= Zl/~"1- Z 2 W3"l- Z3/~ 1 "~t" Z4/~ 2 . (1 )  

The low-energy effective neutral ino-quark lagran- 
gian density has the form [ 3 ] 

g2 
L = 2M 2 ~ ( ~ ' 5 X  ~q ~u [ Vq +Aq ~s ] gtq 

"~-Sq [~]~ ~q~Cq "~)~5~ ~//q~5 ~//q] ) , (2)  

where Z is the neutralino spinor, the ~u o represent the 
quark fields, g is the weak coupling constant, and the 
Vq, Aq and Sq (given explicitly in ref. [3] ) are func- 
tions o f  the mixing parameters Zi. The vector and 
pseudoscalar pieces can be shown to contribute neg- 
ligibly compared to the others as long as q is well be- 
low 1 GeV/c,  and we ignore them in what follows. 
The remaining terms, an axial vector piece multi- 
plied by Aq and a scalar piece multiplied by Sq, con- 
tribute incoherently to the total cross section and can 
therefore be treated separately. Before turning to the 
axial vector interaction, we will briefly discuss the 
simpler scalar (spin-independent) piece. 
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At q= 0, the scalar cross section is proportional to 
the square of the nuclear mass [ 3 ]. For finite q, the 
cross section is reduced by a factor 

d~rs das 
dq 2 ( q ) =  dq 2 (O)F2(q) , (3) 

where the form factor F(q) is the (properly normal- 
ized) Fourier transform of the ground state mass 
density. Previous papers [2 ] have assumed the den- 
sity to be a gaussian with mean-square radius ,v/~R, 
R-- 1.2A ~/3 fm, resulting in a form factor F, (q) = 
exp[-~o(qR)2] .  Here we note only that a more re- 
alistic approximation, still analytic, can be obtained 
[4] by writing the density in the form p ( r ) =  
fd3r ' po(r' )Pl ( r - r ' ) ,  where Po is constant inside a 
sphere of squared radius R 2 = R 2_ 5s 2 (with s about 
1 fro) and p l ( r ) =  exp[-½(r/s)2]. The Fourier 
transform of the function p, which represents a nearly 
constant interior density and a surface of thickness 

S, is 

Fz (q )=  3j,(qRo) exp[_½(qs)2] . 
qRo 

This form factor is very close to that derived from a 
Woods-Saxon parameterization of the nuclear den- 
sity. It deviates somewhat from the gaussian, how- 
ever, when qR ~> 1. The squares of the two form fac- 
tors for A= 131 are plotted for comparison as a 
function ofq  2 in fig. 1. 

Unfortunately, spin-dependent scattering is not 
nearly so simple. Nuclear structure has been shown 
to have large effects [ 5,6 ] on the q= 0 cross sections, 
and we will have to investigate the extent to which 
they survive at higher q. First, however, we must 
reexamine the interaction between neutralino and 
nucleon. An effective z -N  lagrangian can be ob- 
tained at q= 0 by taking the nucleon matrix element 
of eq. (2). The matrix elements ( N I q/q 7u 75 ~uq i N )  
can be written at low momentum transfer in the form 
Aqlqyu75N. The Aq represent the fraction of nucleon 
spin carried by quarks of type q, and can be obtained 
by combining data from neutron decay, hyperon de- 
cay, and a recent measurement by the European 
Muon Collaboration. The result for the proton, ac- 
cording to ref. [7], is Au=0.77, Zid--~--0.49, As-~ 
- 0.15, each with an uncertainty of about _+ 0.08. 

These considerations allow us to write a low-q ef- 
fective neutralino-nucleon lagrangian in the form 

l k ,  , , I ' ' ' I ' ' ' 

.8 

"~ .6 t 
.4 

.2 ~ ~  

0 .02 .04 .06 

q~ (GeV~/e 2) 

Fig. 1. The squares of the form factors F 1 (q) = exp [ - ~ (qR) 2 ] 
(dashed line) and F2(q)=[3j l (qRo) /qRolexp[-½(qs)  2] 
(solid line) as a function of q2 for ~32Xe, with R, Ro and s as 
defined in the text. 

g2 
LN = ~ 2Y'YsZJu (x) , (4) 

where ~,(x)  is a nucleon current. The one-nucleon 
matrix elements of this object at q= 0 have the form 
(in nuclear isospin notation): 

(p, slJa(x)]p, s') 

=ON(p,s) l (ao+a,  r3)ya75UN(p,s ') . (5) 

The isoscalar and isovector coefficients ao and al (re- 
lated to the proton-neutron coefficients by ao=av+ 
a., a~ = a p - a , )  are determined by the quark-level 
coefficients Aq: 

ao = (A, +Aa) (A, +Ad) + 2AsA,, 

a~ = (A, -Aa)  (d, --Ad), (6) 

where we have assumed that the strange-quark con- 
tent of the proton and neutron are identical. In the 
standard supersymmetric model, heavy neutralinos 
are likely [ 8 ] to be either nearly pure # 's  or nearly 
purely symmetric or antisymmetric combinations of 
/~  and/72. In the former case the ratio ao/a~ is about 
0.31, and in the latter case, provided the symmetry 
(or anti-symmetry) is not completely pure, about 
0.12. In either event, the isovector interaction is the 
most important. 
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Now, eq. (5) is just a q = 0  axial-vector nucleon 
current. What happens to this object as q deviates 
from zero? From the study of semileptonic weak pro- 
cesses, it is well known that the isovector part of the 
axial current develops an induced pseudoscalar term 
that corresponds here to the exchange of a virtual no 
between nucleon and neutralino. PCAC implies that 
in the regime of interest the current takes the approx- 
imate form 

(p, s l Ju(x) IP ' ,  s ' )  

= ON(P, s) (½ (ao +al z3)~'~75 

+ ~ quTs ) UN(P', S') 

× exp(iq~x~), (7) 

where qu= (p-p')u and the energy transfer qo has 
been assumed to be very small. At q--m~, the in- 
duced term, which acts to reduce isovector scatter- 
ing, cannot be neglected. 

The next step is to take the nonrelativistic limit of 
the current in eq. (7). The time component Jo con- 
tributes negligibly because it must be multiplied by 
the time component of the axial neutralino current, 
which is v/c ~- 10-3 smaller than the corresponding 
spatial components. The spatial part of  the nucleon 
current J reduces to 

(p, slJ(x) lP',S') 

1 a'qa~z3 
--,(sl½(ao +alz3)tr-- 2 q2+m~ qls') 

× exp(iq~x ") , (8) 

where Is) and Is' ) are two-component spinors. At 
q=0,  the expression is proportional to tr so that the 
scattering amplitude takes the familiar form 
const.×sz.sN. At larger q, both an oscillating spatial 
variation and the induced pseudoscalar term modify 
this result. 

Finally, to obtain the cross section for scattering 
from nuclei we must evaluate the the matrix element 
of  the current between many-nucleon states. In the 
impulse approximation the cross section is 

do" G~ 
- n ( 2 J + l ) v :  ~,M,.~ [~g[2, (9) dq 2 

where J is the ground state angular momentum and 
to good approximation 

• //~= (Sla z IS') f d3x(JMlJ(x)[JM') 

× exp( iq .x) ,  (10) 

with the nuclear current (the time variable has been 
integrated out to give energy conservation) given by 
the sum of individual nucleon currents with matrix 
elements in eq. (8). To evaluate eq. (9), we expand 
the current in vector spherical harmonics and finally 
find 

da 8GZ)viS(q ) 
dq 2 - ( 2 J+  1 

S(q) 

= E  
L o d d  

(I (J[13-~(q)HJ} 12+l(JIl~L(q)llJ} 12) , 

(11) 

where j e , ( q )  and Lf(q) are the transverse electric 
and longitudinal projections of the axial current, de- 
fined generally e.g. in ref. [9]. In our context these 
can be written in the explicit form 

1 2 ½(ao+a,6) 

× [ -x /L  ML,L+, (qri) + X / ~  1 ML,L-, (qri) ] 

1 1 ( a_Lm~V3 ~ 
 eL(q)= 2L,/SZ 2 ao+ q2+m U 

X [ Lx/LTi ML,L÷~ (qrA + x / L  ML,L-~ (qr~) ] ,  

(12) 

where the ML,L,(qri)=jL,(qri)[YL,(~)ai] L (the 
brackets indicate angular momentum coupling), and 
the sum is over individual nucleons i. Note that at 
q = 0 only M l,o contributes and the structure function 
S(q) that determines the cross section in eq. (11 ) 
reduces to 

2 

S(0)- - -4~  (Jll ~/ ~(ao+a,zi3)ai[lJ) , (13) 

in agreement with previous formulations [ 5 ]. At q=  0 
only two numbers - the total isovector and isoscalar 
nuclear spins - are needed to determine the cross sec- 
tion for any ao and a~. At a given nonzero q, however, 
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the isoscalar and isovector ampli tudes  interfere and 
we have 

S(q)=a2oSoo(q)+a~S~(q)+aoa~So~(q) , (14)  

where the functions Soo(q), S~ (q), and Sol (q) can 
be easily worked out from the forms given in eq. (12).  
We therefore need three functions to determine the 
cross section for arbi trary ao and at. 

With these preliminaries out o f  the way, we turn at 
last to the evaluation of  the differential cross section 
eq. ( 1 1 ). A good est imate in candidate detector nu- 
clei requires a sensible model  o f  the nuclear wave 
functions. Early est imates [ 10,1 1 ] o f  the q = 0 cross 
sections that treated only one valence nucleon as ac- 
tive were shown to be inadequate in ref. [ 5 ], where a 
more  accurate t rea tment  was presented. Unfor tu-  
nately, the simple phenomenological  analysis pur- 
sued there cannot  be extended to finite q, because 
there are no experimental  data directly related to 
neutralino-scattering cross sections. Magnetic elec- 
tron-scattering form factors are close but not identi- 
cal to those derived here [ 12 ] and, in any event, have 
not been measured in most  nuclei. We therefore are 
forced to rely on an ab initio calculation. 

As an example,  we consider the isotope 131Xe, 
which scintillates when ionized [ 13 ]. Our  approach 
is similar to that used in a recent calculation [ 14 ] o f  
solar neutrino scattering from 1271; here the method 
is described only briefly. We represent the t31Xe 
ground state in zeroth order as u~3/~ 10) i.e. a 1d3/2 
quasineutron excitation of  an even-even  core 10) 
that is treated in BCS approximat ion  [ 15 ]. For  odd- 
multipole operators  like those in eq. ( 1 1 ), the one- 
quasiparticle approximat ion  is equivalent  to the ex- 
t reme single-particle picture used in the est imates of  
ref. [ 1 1 ]. To incorporate  more  complicated nuclear 
correlations we admix to first order in the residual 
interaction a three-quasiparticle configuration of  the 
form 

[u~3/2 [ p~t~] K] 3/2]0) , [v~3/2[re~n~] r] 3/210> , 
(15) 

where n* and v* represent proton and neutron quasi- 
particle creation operators,  K is an arbi trary inter- 
mediate  angular m o m e n t u m ,  and the indices k and l 
run over  a valence space consisting of  the 2s, ld, 0g 
and Oh harmonic  oscillator levels, the one-body ener- 
gies of  which are adjusted following ref. [16].  In- 

cluding these states corresponds to breaking one of  
the like-particle pairs in the core. The two-body in- 
teraction that admixes the broken pairs is based on 
the Paris-potential  G-matr ix [ 17 ] (see ref. [ 14 ] or 
ref. [ 18] for related calculations with this interac- 
t ion).  The  ampli tudes of  admixed three-quasiparti-  
cle states are small (typically < 0.05 ), indicating that 
the one-quasiparticle approximat ion is in fact quite 
good. Nevertheless, as is well known from studies of  
magnetic moment s  [19],  the admixtures  can have 
substantial effects. The magnetic momen t  of  t31Xe is 
0.69 nuclear magnetons - just 60% of  the single par- 
ticle value - and is reproduced by our calculation to 
within 2%. In terms of  the spin operator,  this trans- 
lates to the following: The one-quasiparticle configu- 
ration has spin - ½ ~ 1  ) = - 0 . 3 .  The broken 
neutron-pair  configurations reduce this value to 
- 0.236. The broken proton pair  carries spin - 0.041 
(in ref. [ 5 ] it was assumed to carry no spin - a rea- 
sonable but not perfect approximat ion)  but further 
quenches the magnetic momen t  because the proton 
spin g-factor gp is opposite in sign to gn. Since a l > ao, 
for most  o f  heavy-neutral ino parameter  space, the 
same effect will be present in the neutralino structure 
function at q = 0 ,  given by eq. (13) .  

The story is somewhat  different at larger q, how- 
ever. Fig. 2 shows the calculated S(q)  versus q2 up to 
q2=0.061 GeV2/c 2 (the m a x i m u m  allowed for 
A = 131 ) alongside the single-particle result, for a pure 
/? ( the curve for a higgsino of  nearly pure symmetry  
is not much different).  The normalizat ion has been 
adjusted so that the single-particle curve takes the 
value 1 at q2=0;  this allows the results to be conve- 
niently compared  to earlier work that presented zero- 
q cross sections in the single-particle model. The large 
discrepancy between the full and single-particle curves 
at q = 0  reflects the effect discussed in the previous 
paragraph. Interestingly, though, while both  func- 
tions fall quickly as q increases, the single-particle 
curve drops faster, so that by about  q2=0.02 GeV2/  
c 2 it is almost  indistinguishable f rom the full result. 
The reason is that the configurations which contrib- 
ute very strongly to the matrix element of  ~r - those 
in which a particle in a high-j orbital near  the Fermi  
surface is excited to its spin-orbi t  par tner  - are con- 
siderably less important  in the higher multipole ma- 
trix elements that  ( f rom eq. ( 1 1 ) ) determine the 
cross section at large q. There, the difference between 
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Fig. 2. The quantity S(q) from eq. ( I I ) versus qZ for a ~ on 
'3'Xe. The dashed line is the prediction of the single-particle 

model; the solid line is thc full result. The normalization has been 

adjusted so that the single-particle S(0) = I. 
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Fig. 3. The partial structure functions Soo ( q ) ( dotted line), S,, ( q ) 
(solid line), and Sol (q) (dashed line) versus q2 in 131Xe. When 
ao=a, the cross section is small because the protons are mostly 
in angular-momentum zero pairs. 

the full and single-particle results more faithfully re- 
flects the amount of three-quasiparticle mixing in the 
wave function, which is obviously quite small. 

For the sake of completeness, we have included in 
fig. 3 the three functions Soo(q), SL1 (q), and Sol (q) 

defined implicitly in eq. (14). These allow the deter- 
mination of the cross section for arbitrary a0 and aL. 
Though we have not shown the corresponding single- 
particle curves, the remarks made above apply here 
as well. 

Finally, we consider the consequences for a pro- 
spective experiment in L3LXe. The recoil energy of a 
xenon nucleus is given by q2/2Mxe. A xenon scintil- 
lator is not likely to be able to detect recoils below 
about 30 keV [ 13], so the shape of the factor S(q) 
determines the percentage of collisions that can be 
seen. With the full/~ structure function in fig. 2, we 
find that 21% of the events induced by a 100 GeV/c  2 
neutralino travelling at U~I0-3C will be above 
threshold. For neutralinos that are much heavier than 
xenon, the fraction is 66%. The corresponding num- 
bers for spin-independent scattering, from fig. 1, are 
13% and 18%. For a scattering process with no fall- 
off as q increases, the two fractions would be 39% and 
88%. The structure functions clearly decrease the ef- 
ficiency of the proposed detector. The spin-depen- 
dent efficiency, however, is higher than the spin-in- 
dependent efficiency, substantially so for very heavy 
neutralinos. The relatively long tail of the spin-de- 
pendent structure function is caused by nucleons near 
the Fermi surface, which do the bulk of the scatter- 
ing. The core nucleons, which dominate the spin-in- 
dependent response, contribute much less at large q. 
These are very general statements that should apply 
in other heavy nuclei as well. 

The precise shapes of  the form factors in other nu- 
clei must be calculated independently, however. 
Among other things, the single-particle result will not 
always be so accurate at high q. In deformed nuclei, 
for instance, a one-quasiparticle configuration is not 
a good approximation to the true wave function and 
therefore cannot be used as a starting point for per- 
turbation theory. In a number of  nearly spherical and 
potential useful nuclei, however, an approach resem- 
bling that outlined here should be quite adequate. 
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